

 Navigation

 	
 index

 	
 next |

 	python_toolbox 0.9.3 documentation

The Python Toolbox Documentation

Contents:

	Topical guides to the Python Toolbox
	abc_tools - documentation not written

	address_tools

	binary_search - documentation not written

	caching

	change_tracker - documentation not written

	cheat_hashing - documentation not written

	color_tools - documentation not written

	combi - Documentation on Combi site

	comparison_tools - documentation not written

	context_management

	copy_mode - documentation not written

	copy_tools - documentation not written

	cute_inspect - documentation not written

	cute_iter_tools - documentation not written

	cute_profile

	cute_testing - documentation not written

	decorator_tools - documentation not written

	dict_tools - documentation not written

	emitting - documentation not written

	exceptions - documentation not written

	file_tools - documentation not written

	freezing - documentation not written

	function_anchoring_type - documentation not written

	gc_tools - documentation not written

	human_names - documentation not written

	identities - documentation not written

	import_tools - documentation not written

	introspection_tools - documentation not written

	locking - documentation not written

	logic_tools - documentation not written

	math_tools - documentation not written

	misc_tools - documentation not written

	monkeypatching_tools - documentation not written

	nifty_collections - documentation not written

	os_tools - documentation not written

	package_finder - documentation not written

	path_tools - documentation not written

	pickle_tools - documentation not written

	process_priority - documentation not written

	queue_tools - documentation not written

	random_tools - documentation not written

	re_tools - documentation not written

	reasoned_bool - documentation not written

	rst_tools - documentation not written

	segment_tools - documentation not written

	sequence_tools - documentation not written

	sleek_reffind - documentation not written

	string_cataloging - documentation not written

	string_tools - documentation not written

	sys_tools - documentation not written

	temp_file_tools - documentation not written

	temp_value_setting - documentation not written

	third_party - documentation not written

	tracing_tools - documentation not written

	version_info - documentation not written

	wx_tools - documentation not written

	zip_tools - documentation not written

	Miscellaneous topics
	Mailing Lists

This documentation is still incomplete. If you have any questions or feedback,
say hello on the mailing list [https://groups.google.com/forum/#!forum/python-toolbox]!

Python Toolbox on GitHub: https://github.com/cool-RR/python_toolbox

Python Toolbox on PyPI: https://pypi.python.org/pypi/python_toolbox

Feel free to fork and send pull requests!

The Python Toolbox was created by Ram Rachum. I provide
Development services in Python and Django [https://chipmunkdev.com].

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

Topical guides to the Python Toolbox

(This section is still incomplete.)

These are topical guides about the various modules in the Python Toolbox.

It focuses on giving the motivation for each module in the Python Toolbox,
explaining what it’s good for and the basics of using it.

	abc_tools - documentation not written

	address_tools
	Classes, functions, methods, modules

	address_tools.describe() and address_tools.resolve()

	binary_search - documentation not written

	caching
	caching.cache()
	A caching decorator that understands arguments

	Both limited and unlimited cache

	Sleekrefs

	caching.CachedType
	A class that automatically caches its instances

	caching.CachedProperty
	A cached property

	change_tracker - documentation not written

	cheat_hashing - documentation not written

	color_tools - documentation not written

	combi - Documentation on Combi site

	comparison_tools - documentation not written

	context_management
	Context managers are awesome

	What does ContextManager add?

	Defining context managers

	Using context managers

	copy_mode - documentation not written

	copy_tools - documentation not written

	cute_inspect - documentation not written

	cute_iter_tools - documentation not written

	cute_profile
	What is “profiling”?

	Profiling Python code with cute_profile

	cute_testing - documentation not written

	decorator_tools - documentation not written

	dict_tools - documentation not written

	emitting - documentation not written

	exceptions - documentation not written

	file_tools - documentation not written

	freezing - documentation not written

	function_anchoring_type - documentation not written

	gc_tools - documentation not written

	human_names - documentation not written

	identities - documentation not written

	import_tools - documentation not written

	introspection_tools - documentation not written

	locking - documentation not written

	logic_tools - documentation not written

	math_tools - documentation not written

	misc_tools - documentation not written

	monkeypatching_tools - documentation not written

	nifty_collections - documentation not written

	os_tools - documentation not written

	package_finder - documentation not written

	path_tools - documentation not written

	pickle_tools - documentation not written

	process_priority - documentation not written

	queue_tools - documentation not written

	random_tools - documentation not written

	re_tools - documentation not written

	reasoned_bool - documentation not written

	rst_tools - documentation not written

	segment_tools - documentation not written

	sequence_tools - documentation not written

	sleek_reffind - documentation not written

	string_cataloging - documentation not written

	string_tools - documentation not written

	sys_tools - documentation not written

	temp_file_tools - documentation not written

	temp_value_setting - documentation not written

	third_party - documentation not written

	tracing_tools - documentation not written

	version_info - documentation not written

	wx_tools - documentation not written

	zip_tools - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

abc_tools - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

address_tools

The problem that address_tools was originally designed to solve was
getting the “address” of a class, and possibly shortening it to an equivalent
but shorter string. But after I implemented that, I realized that this could be
generalized into a pair of functions, address_tools.describe() and
address_tools.resolve(), that can replace the built-in repr() [http://docs.python.org/library/functions.html#repr] and
eval() [http://docs.python.org/library/functions.html#eval] functions.

So, Python has two built-in functions called repr() [http://docs.python.org/library/functions.html#repr] and eval() [http://docs.python.org/library/functions.html#eval]. You
can say that they are opposites of each other: repr() [http://docs.python.org/library/functions.html#repr] “describes” a
Python object as a string, and eval() [http://docs.python.org/library/functions.html#eval] evaluates a string into a Python
object.

When is this useful? This is useful in various cases: For example when you
have a GUI program that needs to show the user Python objects and let him
manipulate them. As a more well-known example, Django uses something like
eval() [http://docs.python.org/library/functions.html#eval] to let the user specify functions without importing them, both in
settings.py and urls.py.

In some easy cases, repr() [http://docs.python.org/library/functions.html#repr] and eval() [http://docs.python.org/library/functions.html#eval] are the exact converses of
each other:

>>> repr([1, 2, 'meow', {3: 4}])
"[1, 2, 'meow', {3: 4}]"
>>> eval(
... repr(
... [1, 2, 'meow', {3: 4}]
...)
...)
[1, 2, 'meow', {3: 4}]

When you put a simple object like that in repr() [http://docs.python.org/library/functions.html#repr] and then put the
resulting string in eval() [http://docs.python.org/library/functions.html#eval], you get the original object again. That’s
really pretty, because then we have something like a one-to-one correspondence
between objects and strings used to describe them.

In a happy-sunshine world, there would indeed be a perfect one-to-one mapping
between Python objects and strings that describe them. You got a Python object?
You can turn it into a string so a human could easily see it, and the string
will be all the human will need to create the object again. But unfortunately
some objects just can’t be meaningfully described as a string in a reversible
way:

>>> import threading
>>> lock = threading.Lock()
>>> repr(lock)
'<thread.lock object at 0x00ABF110>'
>>> eval(repr(lock))
Traceback (most recent call last):
 File "", line 1, in
invalid syntax: , line 1, pos 1

A lock object [http://docs.python.org/library/threading.html#lock-objects] is used for synchronization between threads. You can’t really
describe a lock in a string in a reversible way; a lock is a breathing, living
thing that threads in your program interact with, it’s not a data-type like a
list or a dict.

So when we call repr() [http://docs.python.org/library/functions.html#repr] on a lock object, we get something like
'<thread.lock object at 0x00ABF110>'. Enveloping the text with pointy
brackets is Python’s way of saying, “you can’t turn this string back into an
object, sorry, but I’m still going to give you some valuable information about
the object, in the hope that it’ll be useful for you.” This is good behavior on
Python’s part. We may not be able to use eval() [http://docs.python.org/library/functions.html#eval] on this string, but at
least we got some info about the object, and introspection is a very useful
ability.

So some objects, like lists, dicts and strings, can be easily described by
repr() [http://docs.python.org/library/functions.html#repr] in a reversible way; some objects, like locks, queues, and file
objects, simply cannot by their nature; and then there are the objects in
between.

Classes, functions, methods, modules

What happens when we run repr() [http://docs.python.org/library/functions.html#repr] for a Python class?

>>> import decimal
>>> repr(decimal.Decimal)
"<class 'decimal.Decimal'>"

We get a pointy-bracketed un-eval-able string. How about a function?

>>> import re
>>> repr(re.match)
'<function match at 0x00E8B030>'

Same thing. We get a string that we can’t put back in eval() [http://docs.python.org/library/functions.html#eval]. Is this really necessary? Why not return 'decimal.Decimal' or 're.match' so we could eval() [http://docs.python.org/library/functions.html#eval] those later and get the original objects?

It is sometimes helpful that the repr() [http://docs.python.org/library/functions.html#repr] string "<class
'decimal.Decimal'>" informs us that this is a class; but sometimes you want a
string that you can turn back into an object. Although... eval() [http://docs.python.org/library/functions.html#eval] might
not be able to find it, because decimal [http://docs.python.org/library/decimal.html#module-decimal] might not be currently imported.

Enter address_tools:

address_tools.describe() and address_tools.resolve()

Let’s play with address_tools.describe() and address_tools.resolve():

>>> from python_toolbox import address_tools
>>> import decimal
>>> address_tools.describe(decimal.Decimal)
'decimal.Decimal'

That’s a nice description string! We can put that back into resolve and get the original class:

>>> address_tools.resolve(address_tools.describe(decimal.Decimal)) is decimal.Decimal
True

We can use resolve to get this function, without re [http://docs.python.org/library/re.html#module-re] being imported, and it will import re [http://docs.python.org/library/re.html#module-re] by itself:

>>> address_tools.resolve('re.match')
<function match at 0x00B5E6B0>

This shtick also works on classes, functions, methods, modules, and possibly
other kinds of objects.

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

binary_search - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

caching

The caching modules provides tools related to caching:

	caching.cache()
	A caching decorator that understands arguments

	Both limited and unlimited cache

	Sleekrefs

	caching.CachedType
	A class that automatically caches its instances

	caching.CachedProperty
	A cached property

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

 	caching

caching.cache()

A caching decorator that understands arguments

The idea of a caching decorator is very cool. You decorate your function with a
caching decorator:

>>> from python_toolbox import caching
>>>
>>> @caching.cache
... def f(x):
... print('Calculating...')
... return x ** x # Some long expensive computation

And then, every time you call it, it’ll cache the results for next time:

>>> f(4)
Calculating...
256
>>> f(5)
Calculating...
3125
>>> f(5)
3125
>>> f(5)
3125

As you can see, after the first time we calculate f(5) the result gets
saved to a cache and every time we’ll call f(5) Python will return the
result from the cache instead of calculating it again. This prevents making
redundant performance-expensive calculations.

Now, depending on the function, there can be many different ways to make the same call. For example, if you have a function defined like this:

def g(a, b=2, **kwargs):
 return whatever

Then g(1), g(1, 2), g(b=2, a=1) and even g(1, 2, **{}) are all equivalent. They give the exact same arguments, just in different ways. Most caching decorators out there don’t understand that. If you call g(1) and then g(1, 2), they will calculate the function again, because they don’t understand that it’s exactly the same call and they could use the cached result.

Enter caching.cache():

>>> @caching.cache()
... def g(a, b=2, **kwargs):
... print('Calculating')
... return (a, b, kwargs)
...
>>> g(1)
Calculating
(1, 2, {})
>>> g(1, 2) # Look ma, no calculating:
(1, 2, {})
>>> g(b=2, a=1) # No calculating again:
(1, 2, {})
>>> g(1, 2, **{}) # No calculating here either:
(1, 2, {})
>>> g('something_else') # Now calculating for different arguments:
Calculating
('something_else', 2, {})

As you can see above, caching.cache() analyzes the function and understands
that calls like g(1) and g(1, 2) are identical and therefore should be
cached together.

Both limited and unlimited cache

By default, the cache size will be unlimited. If you want to limit the cache size, pass in the max_size argument:

>>> @caching.cache(max_size=7)
... def f(): pass

If and when the cache size reaches the limit (7 in this case), old values will
get thrown away according to a LRU order [http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used].

Sleekrefs

caching.cache() arguments with sleekrefs. Sleekrefs are a more robust variation of weakrefs [http://docs.python.org/library/weakref.html]. They are basically a gracefully-degrading version of weakrefs, so you can use them on un-weakreff-able objects like int [http://docs.python.org/library/functions.html#int], and they will just use regular references.

The usage of sleekrefs prevents memory leaks when using potentially-heavy arguments.

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

 	caching

caching.CachedType

A class that automatically caches its instances

Sometimes you define classes whose instances hold absolutely no state on them,
and are completey determined by the arguments passed to them. In these cases
using caching.CachedType as a metaclass would cache class instances,
preventing more than one of them from being created:

>>> from python_toolbox import caching
>>>
>>> class A(metaclass=caching.CachedType):
... def __init__(self, a=1, b=2):
... self.a = a
... self.b = b

Now every time you create an instance, it’ll be cached:

>>> my_instance = A(b=3)

And the next time you’ll create an instance with the same arguments:

>>> another_instance = A(b=3)

No instance will be actually created; the same instance from before will be used:

>>> assert another_instance is my_instance

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

 	caching

caching.CachedProperty

A cached property

Oftentimes you have a property [http://docs.python.org/library/functions.html#property] on a class that never gets changed and
needs to be calculated only once. This is a good situation to use
caching.CachedProperty in order to have that property be calculated
only one time per instance. Any future accesses to the property will use the
cached value.

Example:

>>> import time
>>> from python_toolbox import caching
>>>
>>> class MyObject(object):
... # ... Regular definitions here
... def _get_personality(self):
... print('Calculating personality...')
... time.sleep(5) # Time consuming process...
... return 'Nice person'
... personality = caching.CachedProperty(_get_personality)

Now we create an object and calculate its “personality”:

>>> my_object = MyObject()
>>> my_object.personality
'Nice person'
>>> # We had to wait 5 seconds for the calculation!

Consecutive calls will be instantaneous:

>>> my_object.personality
'Nice person'
>>> # That one was cached and therefore instantaneous!

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

change_tracker - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

cheat_hashing - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

color_tools - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

combi - Documentation on Combi site

Please go to Combi’s documentation here [https://combi.readthedocs.io/].

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

comparison_tools - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

context_management

Context managers are awesome

I love context managers, and I love the with [http://docs.python.org/reference/compound_stmts.html#with] keyword. If you’ve
never dealt with context managers or with [http://docs.python.org/reference/compound_stmts.html#with], here’s a practical guide
which explains how to use them. [http://effbot.org/zone/python-with-statement.htm] You may also read the more official PEP 343 [https://www.python.org/dev/peps/pep-0343] which introduced these features to the language.

Using with [http://docs.python.org/reference/compound_stmts.html#with] and context managers in your code contributes a lot to making your code more beautiful and maintainable. Every time you replace a try [http://docs.python.org/reference/compound_stmts.html#try]-finally [http://docs.python.org/reference/compound_stmts.html#finally] clause with a with [http://docs.python.org/reference/compound_stmts.html#with] clause, an angel gets a pair of wings.

Now, you don’t need any official ContextManager class in order to
use context managers or define them; you just need to define
__enter__() and __exit__() methods in your class, and then you
can use your class as a context manager. But, if you use the
ContextManager class as a base class to your context manager class,
you could enjoy a few more features that might make your code a bit more
concise and elegant.

What does ContextManager add?

The ContextManager class allows using context managers as decorators
(in addition to their normal use) and supports writing context managers in a
new form called manage_context(). (As well as the original forms).
First let’s import:

>>> from python_toolbox import context_management

Now let’s go over the features one by one.

The ContextManager class allows you to define context managers in
new ways and to use context managers in new ways. I’ll explain both of
these; let’s start with defining context managers.

Defining context managers

There are 3 different ways in which context managers can be defined, and each
has their own advantages and disadvantages over the others.

	The classic way to define a context manager is to define a class with
__enter__() and __exit__() methods. This is allowed, and if you
do this you should still inherit from ContextManager. Example:

>>> class MyContextManager(context_management.ContextManager):
... def __enter__(self):
... pass # preparation
... def __exit__(self, type_=None, value=None, traceback=None):
... pass # cleanup

	As a decorated generator, like so:

>>> @context_management.ContextManagerType
... def MyContextManager():
... # preparation
... try:
... yield
... finally:
... pass # cleanup

The advantage of this approach is its brevity, and it may be a good fit for
relatively simple context managers that don’t require defining an actual class.
This usage is nothing new; it’s also available when using the standard
library’s contextlib.contextmanager() [http://docs.python.org/library/contextlib.html#contextlib.contextmanager] decorator. One thing that is
allowed here that contextlib [http://docs.python.org/library/contextlib.html#module-contextlib] doesn’t allow is to yield the context
manager itself by doing yield context_management.SelfHook.

	The third and novel way is by defining a class with a manage_context()
method which returns a decorator. Example:

>>> class MyContextManager(ContextManager):
... def manage_context(self):
... do_some_preparation()
... with other_context_manager:
... yield self

This approach is sometimes cleaner than defining __enter__() and
__exit__(); especially when using another context manager inside
manage_context(). In our example we did with other_context_manager
in our manage_context(), which is shorter, more idiomatic and less
double-underscore-y than the equivalent classic definition:

>>> class MyContextManager(object):
... def __enter__(self):
... do_some_preparation()
... other_context_manager.__enter__()
... return self
... def __exit__(self, *exc):
... return other_context_manager.__exit__(*exc)

Another advantage of the manage_context() approach over
__enter__() and __exit__() is that it’s better at handling
exceptions, since any exceptions would be raised inside
manage_context() where we could except [http://docs.python.org/reference/compound_stmts.html#except] them, which is much
more idiomatic than the way __exit__() handles exceptions, which is by
receiving their type and returning whether to swallow them or not.

These were the different ways of defining a context manager. Now let’s see the
different ways of using a context manager:

Using context managers

There are 2 different ways in which context managers can be used:

	The plain old honest-to-Guido with [http://docs.python.org/reference/compound_stmts.html#with] keyword:

>>> with MyContextManager() as my_context_manager:
... do_stuff()

	As a decorator to a function:

>>> @MyContextManager()
... def do_stuff():
... pass # doing stuff

When the do_stuff function will be called, the context manager will be
used. This functionality is also available in the standard library of Python
3.2+ by using contextlib.ContextDecorator, but here it is
combined with all the other goodies given by ContextManager.
Another advantage that ContextManager has over
contextlib.ContextDecorator is that
it uses Michele Simionato’s excellent decorator module [http://pypi.python.org/pypi/decorator] to preserve the
decorated function’s signature.

That’s it. Inherit all your context managers from ContextManager (or
decorate your generator functions with ContextManagerType) to enjoy
all of these benefits.

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

copy_mode - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

copy_tools - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

cute_inspect - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

cute_iter_tools - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

cute_profile

The cute_profile module allows you to profile your code (i.e. find out
which parts make it slow) by giving a nicer interface to the cProfile [http://docs.python.org/library/profile.html#module-cProfile]
library from Python’s standard library.

What is “profiling”?

(Programmers experienced with profilers may skip this section.)

To “profile” a piece of code means to run it while checking how long it takes,
and how long each function call inside the code takes. When you use a
“profiler” to profile your program, you get a table of (a) all the functions
calls that were made by the program, (b) how many times each function was
called and (c) how long the function calls took.

A profiler is an indispensable programming tool, because it allows the
programmer to understand which parts of his code take the longest. Usually,
when using a profiler, you discover that only a few small parts of his code
take most of the runtime of your program. And quite often, it’s not the parts
of code that you thought were the slow ones.

Once you realize which parts of the program cause slowness, you can focus your
efforts on those problematic parts only, optimizing them or possibly
redesigning the way they work so they’re not slow anymore. Then the whole
program becomes faster.

Profiling Python code with cute_profile

Python supplies a module called cProfile [http://docs.python.org/library/profile.html#module-cProfile] in its standard library.
cProfile [http://docs.python.org/library/profile.html#module-cProfile] is a good profiler, but its interface can be inconvenient to
work with. The cute_profile module has a more flexible interface, and it
uses cProfile [http://docs.python.org/library/profile.html#module-cProfile] under the hood to do the actual profiling.

Let’s profile an example program. Our example would be a function called
get_perfects, which finds perfect numbers [http://en.wikipedia.org/wiki/Perfect_number]:

>>> def get_divisors(x):
... '''Get all the integer divisors of `x`.'''
... return [i for i in xrange(1, x) if (x % i == 0)]
...
>>> def is_perfect(x):
... '''Is the number `x` perfect?'''
... return sum(get_divisors(x)) == x
...
>>> def get_perfects(top):
... '''Get all the perfect numbers up to the number `top`.'''
... return [i for i in xrange(1, top) if is_perfect(i)]
>>> print(get_perfects(20000))

The result is [6, 28, 496, 8128]. However, this function takes a few
seconds to run. That’s fairly long. Let’s use cute_profile to find out
why this function is taking so long. We’ll add the
cute_profile.profile_ready() decorator around get_perfects:

>>> from python_toolbox import cute_profile
>>> @cute_profile.profile_ready()
... def get_perfects(top):
... '''Get all the perfect numbers up to the number `top`.'''
... return [i for i in xrange(1, top) if is_perfect(i)]

Now before we run get_perfects, we set it to profile:

>>> get_perfects.profiling_on = True

And now we run it:

>>> print(get_perfects(20000))

We still get the same result, but now a profiling table gets printed:

 60000 function calls in 7.997 seconds

Ordered by: cumulative time

ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.000 0.000 7.997 7.997 <string>:1(<module>)
 1 0.020 0.020 7.997 7.997 <pyshell#1>:2(get_perfects)
 19999 0.058 0.000 7.977 0.000 <pyshell#0>:5(is_perfect)
 19999 7.898 0.000 7.898 0.000 <pyshell#0>:1(get_divisors)
 19999 0.021 0.000 0.021 0.000 {sum}
 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}

This table shows how long each function took. If you want to understand
exactly what each number says in this table, see cProfile.run().

The tottime column says how much time was spent inside this function,
across all calls, and without counting the time that was spent in
sub-functions. See how the get_divisors function in our example has a very
high tottime of 7.898 seconds, which is about 100% of the entire run time.
This means that get_divisors is what’s causing our program to run slow, and
if we’ll want to optimize the program, we should try to come up with a smarter
way of finding all of a number’s divisors than going one-by-one over all
numbers.

profile_ready has a bunch of other options. In brief:

	The condition argument is something like a “breakpoint condition” in
an IDE: It can be a function, usually a lambda, that takes the decorated
function and any arguments and returns whether or not to profile it this time.

	off_after means whether you want the function to stop being profiled
after being profiled one time. Default is True [http://docs.python.org/library/constants.html#True].

	sort is an integer saying by which column the final results table
should be sorted.

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

cute_testing - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

decorator_tools - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

dict_tools - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

emitting - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

exceptions [http://docs.python.org/library/exceptions.html#module-exceptions] - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

file_tools - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

freezing - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

function_anchoring_type - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

gc_tools - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

human_names - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

identities - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

import_tools - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

introspection_tools - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

locking - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

logic_tools - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

math_tools - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

misc_tools - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

monkeypatching_tools - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

nifty_collections - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

os_tools - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

package_finder - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

path_tools - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

pickle_tools - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

process_priority - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

queue_tools - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

random_tools - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

re_tools - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

reasoned_bool - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

rst_tools - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

segment_tools - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

sequence_tools - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

sleek_reffind - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

string_cataloging - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

string_tools - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

sys_tools - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

temp_file_tools - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

temp_value_setting - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

third_party - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

tracing_tools - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

version_info - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

wx_tools - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Topical guides to the Python Toolbox

zip_tools - documentation not written

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python_toolbox 0.9.3 documentation

Miscellaneous topics

	Mailing Lists

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	python_toolbox 0.9.3 documentation

 	Miscellaneous topics

Mailing Lists

There are three Python Toolbox groups, a.k.a. mailing lists:

	If you need help with Python Toolbox, post a message on the python-toolbox
Google Group [https://groups.google.com/forum/#!forum/python-toolbox].

	If you want to help on the development of Python Toolbox itself, come say
hello on the python-toolbox-dev Google Group [https://groups.google.com/forum/#!forum/python-toolbox-dev].

	If you want to be informed on new releases of the Python Toolbox, sign up for
the low-traffic python-toolbox-announce Google Group [https://groups.google.com/forum/#!forum/python-toolbox-announce].

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	python_toolbox 0.9.3 documentation

Index

 P

P

 	

 	
 Python Enhancement Proposals

 	

 	PEP 343

 Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

 topics/read-write-lock.html

 Navigation

 		
 index

 		python_toolbox 0.9.3 documentation »

locking - documentation not written

 © Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		python_toolbox 0.9.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

installation.html

 Navigation

 		
 index

 		python_toolbox 0.9.3 documentation »

Installing the Python Toolbox

Requirements

		Python, version 2.7 or 3.3 or above. If you’re new to Python, download
version 2.7 [http://python.org/download/releases/2.7.2].

		`Setuptools`_.

Installation

The simplest way to install the Python Toolbox is using pip [http://pypi.python.org/pypi/pip]:

		pip install python_toolbox

 © Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

ref/index.html

 Navigation

 		
 index

 		python_toolbox 0.9.3 documentation »

Reference to the Python Toolbox

(This section is still incomplete.)

This section contains reference-style documentation for the various modules in
the Python Toolbox.

It focuses on giving technical explanations of the various
functions and classes, without giving the motivation for using them or a
bigger-picture view of why they were written and what they are good for. For
those, check out the topical guides.

 © Copyright 2009-2017, Ram Rachum.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/down.png

_static/up.png

_static/comment-close.png

_static/comment.png

_static/plus.png

_static/down-pressed.png

_static/file.png

_static/ajax-loader.gif

